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Abstract 
 

Traditional confidence intervals are useful in engineering 

because they offer a guarantee of statistical performance 

through repeated use. However, it is difficult to employ 

them consistently in analyses and assessments because it 

is not clear how to propagate them through mathematical 

calculations. Confidence structures (c-boxes) generalize 

confidence distributions and provide an interpretation by 

which confidence intervals at any confidence level can 

be specified for a parameter of interest. C-boxes can be 

used in calculations using the standard methods of 

probability bounds analysis and yield results that also 

admit the confidence interpretation. Thus analysts using 

them can now literally compute with confidence. We 

illustrate the calculation and use of c-boxes for some 

elementary inference problems and describe R functions 

to compute them and some Monte Carlo simulations 

demonstrating the coverage performance of the c-boxes 

and calculations based on them. 

 

Keywords. confidence intervals, confidence structures, 

c-boxes, p-boxes, probability bounds analysis, binomial 
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1   Introduction 
 

When frequentist confidence intervals are constructed 

across many separate data analyses based on different 

experiments, the proportion of such intervals that contain 

the true value of the parameter will match
1
 the 

confidence level, which can be specified in advance to 

produce any statistical performance that may be desired. 
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That is, the average frequency of coverage will be at least the specified 

confidence level. 

Such a guarantee is very attractive to engineers because it 

allows them to ensure that their conclusions based on 

confidence intervals will perform according to a 

specified standard.  Bayesian methods in general lack 

such guarantees that could ensure statistical performance 

over the long run, and this fact may explain much of the 

reticence among engineers about adopting the Bayesian 

framework (Mayo 1996; cf. Vick 2002).  On the other 

hand, Bayesian methodology allows convenient use of its 

posterior estimates in subsequent calculations, which is 

usually quite difficult with confidence intervals because 

it is not clear how knowledge of confidence intervals for 

parameters can be translated into a confidence interval 

for an arbitrary function of those parameters using 

traditional methods. 

 

This paper introduces the notion of confidence structures, 

or c-boxes.  These structures are defined by a traditional 

confidence interpretation yet admit computations that 

produce results that also have the confidence 

interpretation. The next section briefly reviews 

confidence distributions, which c-boxes generalize.  The 

following sections informally describe c-boxes, give 

some numerical examples, and compare one of these 

examples with Walley’s imprecise beta model. The paper 

includes a discussion of the prospects of using c-boxes to 

compute with confidence, both literally and figuratively, 

including how to project c-boxes characterizing 

parameters to estimate the distributions of observable 

random variates from distributions that depend on those 

parameters.  We provide software functions to compute 

c-boxes for several important cases and simulate their 

coverage properties by Monte Carlo methods.  Such 

simulations are useful to determine whether and how 

conservative the c-boxes are, and thus how useful they 

are likely to be in practice. 
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2   Confidence and Confidence Distributions 
 

The notion of a confidence interval was introduced by 

Neyman (1937). A confidence interval for parameter  

with coverage  has the property that, among all 

confidence intervals computed by the same method, at 

least a proportion  will contain the true value of . A 

confidence interval can serve as an estimate of the 

parameter that is more sophisticated than any point 

estimate could be because it encodes not only the 

available data but also the sampling uncertainty they 

imply. Valid confidence intervals are more than merely 

subjective characterizations of uncertainty; they represent 

rigorous claims and their use establishes a standard of 

statistical performance that in principle can be checked 

empirically with Monte Carlo simulations. Credible 

intervals (sometimes called Bayesian confidence 

intervals in a usurpation of language) are often 

considered to be the Bayesian analogs of confidence 

intervals (Lee 1997), but credible intervals have no 

general accompanying guarantee like that of the 

frequentist notion. 

 

Confidence distributions were introduced by Cox
2
 

(1958), but received little attention in the literature until a 

recent spike of interest (Efron 1998; Schweder and Hjort 

2002; Singh et al. 2005; Xie et al. 2011; Xie and Singh 

2012; inter alia). A confidence distribution is a 

distributional estimate for a parameter, in contrast with a 

point estimate like a sample mean or an interval estimate 

such as a confidence interval.  It has the form of a 

distribution function on the space of possible parameter 

values that depends on a statistical sample in a way that 

encodes confidence intervals at all possible confidence 

levels.  A confidence distribution for a parameter θ  is 

a function C:   (0,1) such that, for every α in (0,1), 

(∞, C
1

()]  is an exact lower-sided 100α% confidence 

interval for θ , where the inverse function C
1

() = 

Cn
1

(x1,…,xn, ) is increasing in α.  This definition 

obviously also implies [C
1

(), C
1

()] is a 100()% 

confidence for the parameter . Although related to many 

other ideas in statistical inference (Singh et al. 2005; Xie 

et al. 2011), a confidence distribution can be considered a 

purely frequentist concept (Schweder and Hjort 2002; 

Singh et al. 2005). 

 

An important example of a confidence distribution is for 

the parametric mean of a normal distribution based on 

random sample data xi, i = 1, 2, …, n. The confidence 

distribution in this case is 
 

Cn() = FTn1(( x )n/s) 
 

wherex is the sample mean, s is the sample standard 

deviation, and FTn1 denotes the cumulative distribution 
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Fraser (2011) argues that confidence distributions can be found in the 

work of Fisher (1930; 1935) under the name ‘fiducial’, and even in that 

of Bayes (1763) namelessly. 

function of Student’s t-distribution with n1 degrees of 

freedom. Confidence intervals for the normal’s mean can 

be constructed directly from this confidence distribution 

as the inverse image of any subset of the confidence 

distribution’s range that has measure equal to the 

intended confidence level.  In particular, 
 

[Cn
1

(), Cn
1

()] =x + s [FTn1
1

(), FTn1
1

()] / n  
 

is a 100()% confidence interval on the mean. For the 

sake of clarity and convenience for readers, these 

formulas can be rendered as code for the R statistical 

computing language (R Development Core Team 2011): 
 

pcnorm.mu = function(mu, x)  
   pt(sqrt(length(x))*(mu-mean(x))/sd(x),length(x)-1) 
 

cinorm.mu = function(x, c=0.95, alpha=(1-c)/2, beta=1-(1-c)/2)  
   mean(x)+qt(c(alpha,beta),df=length(x)-1)*sd(x)/sqrt(length(x)) 
 

The function pxnorm.mu accepts random normal sample 

values in the x array and returns the value of the 

confidence distribution for every value in the mu array.  

The cinorm.mu function also takes the random samples 

in the x array, and returns a confidence interval for the 

mean of the normal distribution that generated those 

sample values at a confidence level set by the argument 

c, which defaults to 95%, or by alpha and beta if they are 

specified. 

 

A Monte Carlo simulation can be implemented using the 

following R function to check that the confidence 

distribution indeed allows valid confidence intervals at 

any level to be constructed from it: 
 

covnorm.mu = function(n,mu,sigma,many=1e4,lots=1e3, ... ) { 
  ab = alphabeta(...) 
  m = seq((mu-5*sigma),(mu+5*sigma),length.out=many) 
  cov = 0 
  for (i in 1:lots) { 
    x = rnorm(n, mu, sigma) 
    h = pcnorm.mu(m, x) 
    ci = range(m[(ab[1]<=h) & (h<=ab[2])]) 
    if ((ci[1]<=mu)&(mu<=ci[2])) cov=cov+1 } 
  cat(' Intended',diff(ab)*100,'%\n','Observed',100*cov/lots,'%\n') 
  cov/lots } 
alphabeta = function(c=0.95,a=(1-c)/2,b=1-(1-c)/2) sort(c(a, b)) 
 

This function can be exercised with a call like 

covnorm.mu(n, , ), specifying just a positive integer n 

and the true mean and standard deviation to use in the 

simulation, which will return a value around 0.95, or a 

call like covnorm.mu(n, , , a=, b=) may also specify 

particular  and  levels. 

 

Although a confidence distribution has the form of a 

probability distribution, it is usually not considered to be 

a probability distribution.  It corresponds to no randomly 

varying quantity; the parameter it describes is presumed 

to be fixed and nonrandom.  Some also emphasize that 

the value of the function C is not probability of , but 



rather confidence
3
 about  (Cox 2006; cf. Lindley 1958).  

A confidence distribution is merely a ciphering device 

that encodes confidence intervals for each possible 

confidence level. Nevertheless, it might be reasonable 

and convenient to adopt a notation that only implicitly 

denotes the confidence distribution, so that, for instance, 

in the case of the normal mean, we can write  
 

 ~x + s Tn1/n 
 

where Tn1 denotes a random variable from Student’s t-

distribution (Student 1908) with n1 degrees of freedom.  

This notation avoids the need to name the confidence 

distribution function.  Note that this use of the tilde ~ 

extends conventional uses in statistics.  We suggest that 

it can still be read as “has the distribution”, or perhaps 

“has uncertainty like”, but it obviously does not suggest 

that the left-hand side is a random variable.  The left-

hand side after all is a value that is fixed, though 

unknown.  Instead, it says that the inferential uncertainty 

about the fixed parameter  is characterized by the 

transformed t-distribution. 

 
Despite their intimate connection with t-distributions, 

confidence distributions are not widely known in 

statistics, at least not under that name. Efron (1998) 

characterized bootstrap distributions as (approximate) 

confidence distributions, and so confidence distributions 

are widely used in modern statistics, albeit under the 

guise of bootstrap distributions.  

 

The notion of confidence distributions is not without 

critics. Early association with fiducial inference has led 

to some confusion. Some readers seem to have difficulty 

accepting confidence distributions on their own terms. 

The arguments of Robert (2012) are paraphrased a bit 

more bluntly in his blog (http://xianblog.wordpress. 

com/2012/06/11/confidence-distributions/): “Either the 

confidence distribution corresponds to a genuine 

posterior distribution, in which case I think the only 

possible interpretation is a Bayesian one. Or the 

confidence distribution does not correspond to a genuine 

posterior distribution, because no prior can lead to this 

distribution, in which case there is a probabilistic 

impossibility in using this distribution.” Of course 

confidence distributions are not trying to be Bayesian 

posterior distributions, so it should hardly be disquieting 

if they fail to be. The requisite interpretation of 

confidence distributions is of course Neyman confidence, 

which Bayesian posteriors do not generally have. 

 

One potential practical disadvantage of confidence 

distributions is that they are not unique.  Multiple 

functions may fill the bill, and there seems to be no 
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Of course, confidence is a probability in a different domain;  

confidence is the probability realized by frequency that those defined 

intervals (, C1()] actually enclose the parameter over some in 

some future, perhaps hypothetical series of experiments.   

general way to pick the best confidence distribution from 

among them.  Of course, confidence intervals themselves 

are not unique either.  There are usually lots of 

reasonable ways to construct a confidence interval for 

any parameter, even for fixed data and model.  Neither 

form of non-uniqueness seems to impede the purpose of 

guaranteeing long-term statistical performance. 

 

Another significant limitation on the use of confidence 

distributions is that not every important inferential 

problem has a solution.  Confidence distributions are 

often constructed by inverting the upper limits of lower 

one-sided confidence intervals of all levels, but this is not 

possible for all important inferential problems.  Notably, 

in particular, there is no confidence distribution for the 

binomial probability. 

 

3   Confidence Structures (C-boxes) 
 

Confidence distributions are special cases of more 

general confidence structures (Balch 2012), which we 

call ‘confidence boxes’ or ‘c-boxes’ because they may 

often be characterized by two bounding distributions like 

probability boxes (Ferson et al. 2003). A c-box 

represents inferential uncertainty about a parameter that 

characterizes some distribution from which limited or 

poor or discrete data have been randomly sampled.  Like 

a confidence distribution, a c-box is defined by the 

property that it can be used to construct Neyman 

confidence intervals at any confidence level for that 

parameter.  C-boxes generalize confidence distributions 

because both are estimators of unobservable parameters, 

but c-boxes can be applied to problems with discrete 

observations, interval-censored data, and even inference 

problems in which no assumption about the distribution 

shape can be made.  

 

Methods for deriving c-boxes are varied (Balch 2012).  

Generally, wherever a meaningful and valid confidence 

interval can be defined, a c-box can also be defined.  If a 

confidence interval is based on a pivot, that pivot can be 

used to directly define a c-box. Any defined confidence 

distribution can be generalized to a c-box when its data 

are encoded not as point values but as intervals to 

account for mensurational uncertainty from the inability 

to measure individual quantities with perfect precision 

(Nguyen et al. 2012; Ferson et al. 2007).  When a 

confidence interval is based on a significance function, 

i.e., a function (of parameters and data) that produces p-

values in a significance test, the significance function can 

be used to construct a consonant confidence structure, 

encoded as a DempsterShafer structure which can then 

be transformed, with some loss of information (Ferson et 

al. 2003), into a p-box (Balch 2012).  

 

The formula and R function for this c-box of the normal 

mean can be generalized for the case of interval-censored 

data using a straightforward but non-trivial algorithm that 



extremizes Cn() over possible configurations of point x-

values within their respective interval ranges (Nguyen et 

al. 2012; Ferson et al. 2007). In case the intervals all 

overlap any value of , the result is vacuous (i.e., the 

interval [0,1]) for that value. For example, if interval-

censored random samples from a normal distribution are 

{[8,11], [5.5,6.9], [1.3,0.3], [3.5,7.5], [0.8,1], [2.8,4.2], 

[1.8,5.2], [2.2,5.2], [3.5,5.7], [5.3,6.1]}, a c-box for the 

normal mean is shown in Figure 1. 
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Figure 1: C-box for the normal mean from interval data. 

 

To extract a confidence interval from a c-box, select 

values of  and  that imply a desired confidence level 

100()%, and map these values from the confidence 

axis to the x-axis. The larger value  is mapped through 

the right bound, and the smaller value  is mapped 

through the left bound. 

 

4   Computing with Confidence 
 

Many authors (e.g., Grosof 1986) have suggested using 

ordinary confidence procedures to obtain interval inputs 

for use with interval analysis (Moore 1966) for bounding 

numerical results that depend on sample data. For 

example, EPA (2002) guidance instructs risk analysts to 

use the upper bound from the 95% confidence interval 

for a pollutant’s mean concentration rather than the 

actual sample mean of observed concentration values in 

order to be protective of the public health in the face of 

sampling uncertainty arising from sometimes very small 

sample sizes.  Although this may be a reasonable strategy 

when there is only a single variable for which sampling 

uncertainty is a major concern, it is not statistically 

defensible when such uncertainties for several variables 

must be combined together.  Statistical confidence 

intervals are not rigorous intervals guaranteed to enclose 

the value they estimate, and therefore confidence 

intervals do not formally admit interval calculation in the 

sense of Moore (1966).  

 

Some limited statements are possible using ad hoc 

application of Bonferroni or Šidák corrections or Boole 

or Fréchet inequalities (e.g., Ferson 1996). For example, 

if we combine, say by addition, two 95% confidence 

intervals using simple interval arithmetic, we might 

expect the result to be a ~90% confidence interval for the 

sum because the conjunction of the two probability 

statements would imply multiplying the two probability 

levels, at least assuming independence between them.  If 

seven such confidence intervals were combined in some 

mathematical function, the implied probability level 

under independence would be less than 70%.  Without 

the independence assumption, the level could fall as low 

as 65%.  To achieve 95% confidence for the result, one 

would presumably have to use input confidence intervals 

with confidence level equal to the seventh root of 95%, 

which is greater than 99%.  Because confidence intervals 

often get substantially wider as the confidence level rises, 

this approach is rarely workable in practice. 

 

The alternative approach of computing with confidence 

distributions is also not practical just because (precise) 

confidence distributions often do not exist for important 

problems. This limitation may be alleviated by c-boxes 

because they generalize confidence distributions and 

more easily provide solutions. Although Cox (2006) 

counseled that analysts should not try to use confidence 

distributions in calculations as though they were true 

probability distributions, Balch (2012) proved that two or 

more independent c-boxes can be propagated through a 

function to yield a valid c-box.  This is much more 

efficient than propagating individual confidence intervals 

because the combinations do not require application of 

the Bonferroni or Šidák corrections and they deliver 

results at all confidence levels all at once.   

 

For example, suppose one were interested in computing a 

95% confidence interval on the mean difference between 

two normal populations with both unknown mean µ and 

unknown standard deviation σ. Suppose we collect four 

random samples from each population, say, {2.71, 5.46, 

5.45, 5.50}, and {1.88, 1.54, 1.15, 0.46}. One approach 

to obtaining the desired interval would be to take the 

interval-difference of the 97.468% confidence intervals 

on the two population means.  The resulting estimate 

would be µ2  µ1 = [0.37, 6.67] with 95% confidence. 

Alternatively, one could take the stochastic difference of 

the two c-boxes on the uncertain means which are 

(shifted and scaled) t-distributions. This yields a much 

tighter 95% central confidence interval on the difference, 

[1.10, 5.94], although it is somewhat more difficult to 

compute because it involves a subtractive convolution 

rather than merely an interval difference. Still, it can be 

calculated via Monte Carlo simulation in R using only 

three lines: 
 

rcnorm.mu = function(m, z) 
     mean(z)+sd(z)*rt(m, length(z)-1)/sqrt(length(z)) 
d = sort(rcnorm.mu(m, x) - rcnorm.mu(m, y)) 
range(d[round(c(0.025*m, (1-0.025)*m))]) 
 

where x and y are the vectors of sample values, m is the 

number of Monte Carlo simulations. In fact, this result is 

the same as the 95% credible interval that would be 

obtained using Bayesian inference with a Jeffreys prior. 

The convolution of the confidence distributions yields 

confidence intervals by a purely frequentist analysis that 

supports a traditional confidence interpretation in this 



and other cases generally. The following R function can 

be used to implement straightforward Monte Carlo 

simulations that demonstrate the confidence intervals 

produced by this approach have the prescribed coverage: 
 

covnorm.mudiff=function(n,mu,sigma,many=1e4,lots=1e3,...){ 
  ab = alphabeta(...) 
  truediff = mu[1] - mu[2] 
  cov = 0 
  for (i in 1:lots) { 
    x = rnorm(n[1], mu[1], sigma[1]) 
    y = rnorm(n[2], mu[2], sigma[2]) 
    ci=range(sort(rcnorm.mu(many,x)- 
                        rcnorm.mu(many,y))[round(many*ab)]) 
    if ((ci[1] <= truediff) & (truediff <= ci[2])) cov = cov + 1 } 
  cat(' Intended',diff(ab)*100,'%\n','Observed',100*cov/lots,'%\n') 
  cov/lots } 
 

This function can be called like covnorm.mudiff(n, , ), 

where n,  and  are now each pairs describing the 

sample sizes and parameters for the two populations. For 

instance, covnorm.mudiff(c(10,20),c(5,1),c(2,3)) will return a 

value around 0.95. 

 

5   C-box for the Binomial Probability 
 

A Bernoulli random variable has only two possible 

values, perhaps designated {failure, success}, or more 

conveniently {0, 1}. A binomial random variable is a 

random variable whose value is a count of Bernoulli 

successes observed over n > 0 independent identical 

trials, each of which has the same probability p of 

success, which produces k successes from those n trials 

(where 0 ≤ k ≤ n). A fundamental problem in risk 

analysis and statistics generally is to characterize what 

can be inferred about p from observing k successes out of 

n trials, under the assumption that the trials are 

independent and the binomial probability p is fixed 

across the trials.  

 

In fact, the original problem in the famous paper of 

Bayes (1763) was about the estimation of the binomial 

probability.  The paper begins “Given the number of 

times in which an unknown event has happened and 

failed: Required the chance that the probability of its 

happening in a single trial lies somewhere between any 

two degrees of probability that can be named” (Bayes 

1763, page 376). The same page also says “By chance I 

mean the same as probability.” We take this to be asking, 

given k successes and n  k failures out of n trials where 

k ~ binomial(n, p), what is Pr(p  [p1, p2]), for any values 

p1 and p2? 

 

Balch (2012) offers a c-box solution to this problem: 
 

p ~ [beta(k, n k + 1), beta(k + 1, n  k)], 
 

where p is the binomial parameter (which is a fixed but 

unknown value), and the two beta distributions are the 

left and right edges of the c-box that characterizes the 

inferential uncertainty about p. Note that we continue to 

use the ~ symbol even though the right-hand side has the 

form of a p-box.  The ~ can be read as “has uncertainty 

like”.  We understand this to entail that the parameter on 

the left-hand side has inferential uncertainty 

characterized by a confidence distribution consistent with 

or inside the c-box, that is, a distribution that is bounded 

in the cumulative by the two edge distributions of the c-

box. 

 

Figure 2 depicts an example using k = 2 and n = 10 in a 

graph whose abscissa consists of the possible values of 

the parameter p and whose ordinate is confidence 

(probability). 
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Figure 2: C-box and a 100()% confidence interval 

for probability from 2 successes in 10 trials. 

 

The c-box in Figure 2 has a confidence interpretation, 

which means that one can generate from it true 

confidence intervals for the binomial probability p at any 

desired level of confidence.  For example, the depicted 

interval is the symmetric 90% confidence interval [0.037, 

0.507]. The confidence intervals obtained in this way are 

identical to the classical ClopperPearson (1934) 

confidence intervals on the binomial probability. One-

sided confidence intervals can be obtained by setting  to 

zero or  to one. The c-box approach readily provides 

results for cases involving k = 0 and k = n, and even the 

no-data case where n = 0, without the overthinking 

required by a Bayesian analysis constrained to a single 

precise distribution (Winkler et al. 2002).  

Of course the Bayesian and frequentist approaches are 

trying to do different things.  In the c-box approach, p1 

and p2 are sought to be functions of the data and 

probabilities are conditional on some hypothetical (but 

unknown) value of p. In contrast, Bayes explicitly 

conditions on the data, and asks about the probability of 

p as a latent variable. These approaches are asking a very 

different questions: c-boxes ask about coverage for a 



fixed value of p, whereas Bayes is asking about the 

probability of p as a latent random variable. 

The c-box and arbitrary confidence intervals for the 

binomial probability given k successes out of n trials can 

be computed in R with the functions: 
 

pcbinom.p = function(p, k, n)  
   list(left=pbeta(p, k, n-k+1), right=pbeta(p, k+1,n-k)) 
 

cibinom.p = function(k, n, c=0.95, alpha=(1-c)/2, beta=1-(1-c)/2)  
   qbeta(c(alpha,beta), c(k,k+1), c(n-k+1,n-k)) 
 

Straightforward Monte Carlo simulation can demonstrate 

the confidence intervals perform statistically. 

 
Note that the c-box also answers Bayes’ question about 

the chance p is in some range, but it gives an interval 

rather than a single precise probability. The c-box says 

Pr(p  [p1, p2])  [min(0, BR(p2)  BL(p1)), BL(p2) BR(p1)], 

where BL denotes the cumulative beta distribution with 

parameters k and nk+1, and BR is the cumulative beta 

with parameters k+1 and nk. The lower bound can be 

called confidence, and the upper bound plausibility, and 

together they characterize the chance sought by Bayes. 
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Figure 3: C-boxes for the binomial probability implied 

by k/n successes out of trials. 

 

Figure 3 shows the first few c-boxes for sample sizes 

between zero and three. Notice that the c-box for the null 

case when n = 0 corresponds to the entire unit square. 

Thereafter, the possible c-boxes for any given sample 

size partition the unit square. As sample size increases, of 

course the c-box approaches a precisely specified beta 

distribution which becomes steeper and steeper and 

centered on the observed frequency k/n. 

 

What determines whether the solution to an inference 

problem is a precise confidence distribution or a non-

degenerate, imprecise c-box? For the normal mean the 

solution is precise unless the data are themselves 

imprecise from interval-censoring (as in Figure 1). For 

binomial probability, however, the solution is imprecise 

even for well identified data. The reason is what 

ecologists call “demographic” uncertainty (Akçakaya 

1991), which is the variation that arises simply because 

of the constraint that data must come as integers. The 

discrete nature of binomial sampling means that evidence 

cannot reflect patterns as well as continuous data can. 

Demographic uncertainty is only important for small 

sample sizes, but it cannot be neglected in such cases. 

 

5.1  Comparison with the Imprecise Beta Model 
 

The c-box solution to the binomial probability estimation 

problem can be compared to the imprecise beta model 

(IBM) first suggested by Dempster (1966) but elaborated 

and championed by Walley (1991; 1996; Walley et al. 

1996; Bernard 2005). The IBM employs a class of prior 

distributions beta(st, s(1t)), t  [0,1], defined by a 

single, fixed value s > 0 that measures resistance (maybe 

stubbornness) of the model to new data. After observing 

k successes in n trials, the posterior is the class beta(st+k, 

s(1t)+nk). Extremizing t from 0 to 1 yields the 

posterior p-box [beta(k, s+nk), beta(s+k, nk)] whose 

expectation is the interval [k/(s+n), (s+k)/(s+n)]. As data 

become available and the model is updated, the left and 

right beta distributions incrementally converge in 

accordance with a rate defined by the parameter s. 

Figure 4 illustrates, for three different values of s, how 

the vacuous prior (top row) contracts to a posterior with 

the addition of each binary datum in the sequence {0, 0, 

1, 0}. Each graph shows eleven beta distributions evenly 

distributed across the posterior class. 

 

The IBM is an example of Bayesian sensitivity analysis 

or robust Bayes analysis (Berger 1985).  It may be 

thought of as many simultaneous Bayesian analyses with 

many priors ranging between the limiting distributions 

beta(0,1) and beta(1,0), in which at least one posterior 

may be improper if k is equal to n or zero.  Walley 

(1991) has demonstrated that robust Bayes analysis is 

part of a more general theory based on imprecise 

probabilities of very broad scope and flexibility, for 

which there is a firm theoretical foundation based on 

respecting consistency and coherence requirements but 

which avoids making unwarranted assumptions to obtain 



quantitative answers. The most important feature of the 

IBM is that it does not require the analyst to select some 

precise probability distribution as prior. The IBM instead 

intends to specify a reasonable class of priors. The idea is 

that no single distribution could be reasonable as a model 

of prior ignorance, but considered as a whole, the class of 

beta distributions with all possible means specified by 

IBM is arguably a reasonable model for ignorance. 
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Figure 4: IBMs and their beta distributions for different 

values of s as data accumulates. 

 

In the degenerate initial case, when the sample size is 

zero before any data are collected, the posterior is the 

same as the prior, and the IBM yields a vacuous posterior 

that effectively says the probability could be anywhere in 

the interval [0,1], which is arguably the only sensible 

inference when there are no data at all. When the sample 

size is very large, the posterior is a tight p-box that tends 

to the observed frequency, as all Bayesian analyses do. In 

the practical intermediate cases of small sample sizes, the 

posterior from the IBM is a credal set containing a range 

of beta distributions whose breadth reflects the 

uncertainty about the prior that a traditional Bayesian 

analysis ignores.  Importantly, this breadth is not too 

wide to be useful, but yields answers whose imprecision 

is roughly what one might expect to see across a 

community of competent Bayesians (Walley 1991).   

 

A user of the IBM must chose a value for the parameter 

s. This value determines the speed of convergence with 

which data cause the initially vacuous state of 

uncertainty to condense into the precise posterior 

approaching the observed frequency k/n.  High values of 

s cause the IBM to converge slowly. For a given value of 

t, larger values of s cause the variance of the distribution 

beta(st, s(1t)) to be smaller, so when the distribution is 

considered as an estimate of , larger s means there is 

more precision about the parameter. Walley (1996; 

Walley et al. 1996) recommended using s = 1 or s = 2, 

with preference for the larger value. 

 

The c-box approach described in the previous section 

conforms with an IBM using s = 1, although the IBM and 

c-box have rather different interpretations. Walley (1996) 

noted the IBM’s frequentist coverage characteristics, 

though he did not mention these coverage characteristics 

could be propagated through mathematical calculations 

based on the IBM. The most immediate difference 

between the IBM and the c-box approach might be that 

IBM users must select a value for s. Users of the c-box 

approach do not need to choose such a value, as the 

parameter is not used in the derivation of the approach. 

 

There are also fundamental differences. The prior and 

posterior structures of the IBM are credal sets, but they 

are rather delicate credal sets in that they consist only of 

beta distributions with particular, constant values of s (as 

depicted in Figure 4). A c-box is a much coarser and 

fuller structure. It effectively includes all the beta 

distributions that are in the IBM plus infinitely many 

other distributions that might also be considered 

reasonable. The choice of the beta family is of course a 

result of the happenstance of mathematical conjugacy 

between the beta distribution and binomial sampling. 

One notable difference and possible conceptual 

advantage of the c-box approach is that it does not 

depend on the fiction that the appropriate prior actually 

or necessarily has some beta shape. Thus, in contrast 

with the imprecise beta model, one might consider the c-

box solution to be an imprecise model for the binomial 

probability, or even the imprecise model for the binomial 

probability. Such presumptuousness in doing so might 

eventually be forgivable if it turns out that the c-box 

provides a slightly tidier solution to Bayes’ original 

problem of estimating the binomial probability. 

 

Perhaps more important than any tidiness or even the 

ability to propagate the confidence interpretation through 

mathematical functions is the fact that the solution 

strategy for the inference about binomial probability can 

now be contextualized as an instance of a general 

approach based on confidence that can be applied in 

many other inference problems. In contrast with the 

IBM, which seems to be a sui generis solution for one 

parameter of one particular sampling model, the c-box 

solution clearly generalizes to other problems. Balch 

(2012) discusses these prospects. 

 

6   Predictive Distributions and P-boxes 
 

If the first estimation problem given a sample of 

observable values Xi ~ F() is to characterize the 



sampling or inferential uncertainty associated with a 

putatively fixed but unknown parameter  governing the 

stochastic process that created those observable values, 

the second estimation problem, which is discussed in this 

section, is to characterize what can be inferred about a 

future observable value Xn+1 that might be collected. In 

addition to the sampling uncertainty associated with the 

inference step that arises from not having measured 

every possible sample value, this characterization also 

has a component of pure aleatory uncertainty associated 

with the underlying stochastic process F.  

 

The characterization is a predictive distribution, or more 

generally a predictive p-box. This output is analogous to 

a Bayesian posterior predictive distribution and related to 

prediction intervals common in frequentist analyses. 

Note that the output is a proper p-box because it is a 

collection of probability distributions constrained by a 

pair of bounding distributions. But this p-box is special 

in that it also inherits the confidence interpretation. 

 

The predictive distribution or p-box can be understood to 

be, and evaluated as, the composition F(C()) of the 

distribution function F and the c-box C estimating the 

parameter . For example, the Bernoulli distribution can 

be composed with the c-box for the binomial probability 

to create the predictive p-box for the next randomly 

sampled Bernoulli deviate. For this case, the composition 

can be done analytically: Given a Bernoulli process 

generating zeros and ones where the probability of one is 

p which has a constant but unknown value, and n random 

observations of which k values are ones and n k values 

are zeros, the predictive p-box, i.e., the p-box estimate of 

the distribution for the next binary observation, is 

[B(k / (n + 1)), B((k + 1)/(n + 1))], where B denotes a 

Bernoulli distribution. Likewise, the predictive p-box for 

the next binomial deviate, that is, the number of ones in 

N Bernoulli trials, is [BB(k, n k +1, N), BB(k +1, n k, 

N)] where BB denotes a beta-binomial distribution. 

 

Straightforward Monte Carlo simulations can 

demonstrate that the interval [BB1
1

(), BB2
1

()] will 

contain the next binomial deviate with coverage 

probability   , where BB1
1

 and BB2
1

 are the quantile 

functions of the beta-binomial distributions BB(k, n k 

+1, N) and BB(k +1, n k, N) respectively. 

 

When the c-box is described numerically rather than 

analytically, probability bounds analysis provides for 

numerical composition.  For one-parameter distribution 

families, this involves discretizing the parameter’s c-box 

C = [C1(), C2()] into to m+1 equal-confidence intervals 

[C1
1

(i/(m+1)), C2
1

((i+1)/(m+1))], i = 0, 1, ..., m, where 

the superscripts denote appropriate inverse or quasi-

inverse functions. Each of these intervals in turn define a 

p-box. Each of these p-boxes is the distribution function 

F with that interval for the parameter . All of the p-

boxes are then aggregated using stochastic mixture which 

reverses the dissolution into many intervals. Equal 

weights are used for the mixture so long as the original 

discretization of the c-box was into intervals with equal 

partitions of confidence. (For details about this operation, 

see sections 2.3 and 3.2.1.6 of Ferson et al. 2003.) 

 

7   Summary and Conclusions 
 

This paper gives a brief introduction to a new class of 

estimators for a broad variety of inference problems 

called confidence boxes (c-boxes) that both embody a 

traditional confidence interpretation yet also support 

propagation of inferential uncertainty through 

mathematical operations.  C-boxes can be thought of as 

the confluence of classical notions of confidence 

(Neyman 1937) embodied in confidence distributions 

(Cox 1958) with more recent ideas about imprecise 

probabilities (Walley 1991) expressed as probability 

boxes (Ferson et al. 2003). The paper omits the 

derivations of the c-box solutions described by Balch 

(2012), but emphasizes that their statistical performance 

can be checked via Monte Carlo simulations and 

provides R functions for this purpose. 

 

C-boxes capture much of the flexibility of Bayesian 

posteriors. However, by consistently supporting a 

Neyman confidence interpretation, c-boxes also establish 

a clear connection to the underlying empirical reality, a 

connection which both Walley (1991) and Mayo (1998) 

have called for. This means that engineering and 

statistical calculations can be constructed using c-boxes 

that ensure a particular standard of performance. This 

approach should be useful for many applications in 

medical statistics, engineering in novel environments, 

market research, survey sampling, etc., whenever 

statistical performance is desired but sample data are in 

short supply. 

 

In the inference for the binomial probability, the c-box is 

very similar to the imprecise beta model (IBM, Walley 

1996).  However, the c-box arises in a purely frequentist 

framework, and it does not refer to or depend on any 

priors. Its results include more than beta distributions. 

Unlike the IBM, the c-box approach for the binomial 

probability has clear connections to other inference 

problems such as those involving normal sampling 

models, and the pathway for extending these solutions to 

other problems is much more straightforward. 

 

Because confidence boxes can be used in subsequent 

calculations involving compositions and convolutions 

using standard methods of probability bounds analysis, 

and the resulting structures also have the same Neyman 

confidence interpretation, analysts using c-boxes will be 

able, both figuratively and literally, to compute with 

confidence. For instance, a c-box for a parameter can be 

composed with the distribution function of a sample 

model to create a p-box that characterizes the distribution 



of the next sample. The result is a new type of p-box that 

also has the confidence interpretation. Convolutions of c-

boxes yielding sums, differences or other mathematical 

results likewise preserve the confidence interpretation. 

Point estimators ignore uncertainties altogether.  Interval 

estimators such as confidence intervals can be unwieldy 

for several reasons. Even detail-rich distributional 

estimators like confidence distributions or Bayesian 

posteriors may give an incomplete characterization under 

demographic uncertainty when continuous parameters 

must be estimated from discrete data.  C-boxes are more 

general than distributional, interval or point estimators.  

C-boxes can express inferential uncertainty arising from 

demographic uncertainty, as well as both sampling 

uncertainty from small sample sizes and mensurational 

uncertainty arising from the inability to measure 

quantities with infinite precision.  The new estimators 

have the form of p-boxes, so that they may rightly be 

described as p-box estimators of parameters. C-boxes 

provide inferential tools to complement and support the 

theory of p-boxes and probability bounds analysis. 
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